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Abstract 
 

Detection and identification represent two fundamental types of decision tasks. 
Although research has focused on each in isolation, the pure forms of these 
tasks are generally not representative of more complex naturalistic decision 
environments. For example, a decision maker involved in a Search and Rescue 
(SAR) operation is faced with locating and identifying a crash site. This kind of 
decision environment is characterized by both detection and identification 
components. That is, the decision maker is confronted with uncertainty 
regarding the presence of a target crash site, and the task of identifying the 
target from among similar looking structures in the terrain. Decision research 
using compound decision tasks (detection plus identification) has the advantage 
of making greater contact with naturalistic environments, but carries with it the 
cost of increased complexity in analyzing and understanding the data. Because 
compound decision tasks have more than one locus where decision making can 
be affected, a formal method is needed to disambiguate (deconfound) effects on 
decision making and simplify an understanding of decision making 
performance in complex tasks. In this report a formal model of compound 
decision tasks (SDT-CD) is presented which fulfills this role. The model was 
assessed by an analysis of several demonstration data sets from a wide variety 
of content domains which highlight its ability to simplify the complexity of the 
task and provide readily interpretable results. In addition to measures of 
performance and decision bias, the model can be used to test hypotheses about 
decision making and permits an assessment of whether decision making is 
optimal. 
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Résumé 
 

La détection et l’identification représentent deux types fondamentaux de tâches 
décisionnelles. Ces deux tâches, prises isolément, ont fait l’objet de travaux de 
recherche. Cependant, dans leur forme pure, elles ne sont pas représentatives, 
en général, des environnements décisionnels du monde réel, beaucoup plus 
complexes. Par exemple, un décideur qui participe à une opération de recherche 
et de sauvetage (SAR) est chargé de localiser et d’identifier le site de 
l’écrasement d’un aéronef. Ce type d’environnement décisionnel comporte un 
élément « détection » et un élément « identification ». Cela signifie que le 
décideur est confronté à une incertitude en ce qui concerne le site de 
l’écrasement, et qu’il doit identifier le site parmi d’autres structures d’aspect 
similaire sur le terrain. La recherche sur les tâches décisionnelles complexes 
(détection plus identification) a l’avantage d’être plus en phase avec le monde 
réel, mais en contrepartie, il y a le coût de la complexité accrue de l’analyse et 
de la compréhension des données. Étant donné que les tâches décisionnelles 
complexes font intervenir plusieurs facteurs susceptibles d’influencer la prise 
de décision, il faut une méthode formelle pour distinguer (clarifier) les effets 
des divers facteurs, et pour simplifier l’évaluation des résultats de la de prise de 
décision. Le rapport présente un modèle de tâches décisionnelles complexes 
(SDT-CD) qui joue précisément ce rôle. Ce modèle a été évalué grâce à 
l’analyse de plusieurs ensembles de données de démonstration provenant d’une 
grande variété de domaines, et il a fait la preuve qu’il est capable de dénouer 
des tâches complexes et de fournir des résultats faciles à interpréter. En plus de 
mesurer la performance et la partialité du processus de prise de décision, le 
modèle peut être utilisé pour tester des hypothèses et pour évaluer si la prise de 
décision est optimale. 
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Executive summary 
 

Background 

Much of the basic research and theory development on decision making has 
focused on simple (or pure) decision problems in strict isolation of one another. 
However, military decision makers outside the laboratory are faced with more 
complex decision environments. These more naturalistic settings are often 
characterized by a combination of simple decision problems that need to be 
addressed simultaneously by the decision maker. For example, Search and 
Rescue (SAR) operations require identification of a target crash site 
(identification decision problem) in the context of uncertainty regarding the 
presence of the target at any given time (detection decision problem). The 
combination of identification and detection problems form what is referred to 
as a compound decision task; one that represents a closer approximation to 
natural decision environments. This research was conducted to extend decision 
theory into more complex domains of the compound decision task in an effort 
to provide researchers with the tools required to study decision making that is 
more directly relevant to the CF. To meet this requirement, a formal model was 
developed to provide a means of simplifying the assessment of decision making 
performance, bias, and optimality in various compound decision environments. 

Results  

The viability of the model was determined by fitting it to several data sets from 
compound decision tasks across several domains; including SAR, eyewitness 
identification, and medical diagnosis of tumours. 

• Analytically, the model showed a statistically good fit to three of the four 
demonstration data sets. Overall, the model showed a good qualitative fit to 
all four data sets.  

• Theoretically, the model was successfully used to test hypotheses about the 
data regarding decision performance, bias, and optimal use of decision 
rules. 

• The model allowed for a simplification and deconfounding of data analysis 
found to occur with more conventional analysis of compound decision 
tasks. 
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Significance 

The existence of this model creates greater opportunity for the use of more 
complex decision tasks in military decision making research. By simplifying 
and deconfounding data analysis, as well as providing a clear separation of 
performance, bias, and optimality, defence research can move more easily 
toward more naturalistic decision settings. This will further strengthen the ties 
between decision research and direct military applications. Because the model 
represents an abstract conceptual framework, it can be applied to many 
different content domains, in addition to dealing with global decision issues 
that permeate all content domains (e.g., confidence calibration). This will 
permit decision research to be conducted within a wider range of areas and 
applications, including an extension of the model into automated decision 
systems research. 

 

 

Duncan, M. J. 2006. A Signal Detection Model of Compound Decision Tasks. DRDC 
Toronto TR 2006-256 Defence R&D Canada. 
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Sommaire 
 

Contexte 

Jusqu’ici, une grande partie des travaux de recherche et des études théoriques 
sur la prise de décision ont porté sur des problèmes décisionnels simples, pris 
isolément. Cependant, à l’extérieur des laboratoires, les décideurs militaires 
font face à des environnements décisionnels beaucoup plus complexes. Ces 
environnements plus proches du monde réel se caractérisent bien souvent par 
une combinaison de problèmes décisionnels simples qui doivent être examinés 
simultanément par le décideur. Par exemple, les opérations de recherche et de 
sauvetage (SAR) nécessitent l’identification du site de l’écrasement d’un 
aéronef (problème d’identification), et ils comportent une incertitude quant à 
l’emplacement de ce site (problème de détection). La combinaison de ces 
problèmes d’identification et de détection forme ce que l’on appelle une tâche 
décisionnelle complexe, plus proche de ce que l’on retrouve dans la réalité. 
Cette recherche a été menée pour étendre la théorie de la prise de décision aux 
tâches décisionnelles complexes, afin de fournir aux chercheurs les outils dont 
ils ont besoin pour étudier les problèmes de prise de décision qui intéressent 
plus particulièrement les FC. Pour répondre à ce besoin, un modèle a été 
élaboré qui simplifie l’évaluation de la performance, de la partialité et de 
l’optimalité du processus de prise de décision dans divers environnements 
décisionnels complexes. 

Résultats 

Pour évaluer la viabilité du modèle, on l’a appliqué à plusieurs ensembles de 
données provenant de tâches décisionnelles complexes dans plusieurs domaines 
d’activité, y compris la recherche et le sauvetage (SAR), l’identification des 
témoins et le diagnostic médical des tumeurs. 

• Sur le plan analytique, le modèle a affiché de bons résultats statistiques 
pour trois des quatre ensembles de données de démonstration. Globalement, 
le modèle a affiché de bons résultats qualitatifs pour les quatre ensembles 
de données. 

• Sur le plan théorique, le modèle a été utilisé avec succès pour tester des 
hypothèses sur les données concernant la performance, la partialité et 
l’optimalité du processus de prise de décision. 

• Le modèle a permis de simplifier et de clarifier les données concernant les 
tâches décisionnelles complexes, par rapport aux méthodes d’analyse plus 
conventionnelles. 
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Signification 

Ce modèle crée de nouvelles possibilités pour l’utilisation de tâches 
décisionnelles plus complexes dans la recherche sur le processus de prise de 
décision militaire. En simplifiant et en clarifiant l’analyse des données, et en 
faisant clairement la distinction entre la performance, la partialité et 
l’optimalité, la recherche militaire pourra examiner plus facilement la prise de 
décision dans des situations réelles. Cela renforcera les liens entre la recherche 
sur la prise de décision et les applications militaires réelles. Étant donné que le 
modèle représente un cadre conceptuel abstrait, il peut être appliqué à de 
nombreux domaines d’activité, en plus des problèmes décisionnels généraux 
communs à tous les domaines (ex. : calibrage de la confiance). Cela nous 
permettra de faire de la recherche dans une grande variété de domaines, et 
d’appliquer notamment le modèle à la prise de décision assistée par ordinateur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Duncan, M. J. 2006. Détection des signaux – Modèle de tâches décisionnelles complexes. 
TR 2006-256 R & D pour la défense Canada. 
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1. Introduction 
 

This report focuses on a fundamental problem in decision research regarding 
methods for analyzing and interpreting data derived from compound decision 
tasks. The term compound decision task refers to the case where a human (or 
machine) operator is attempting to identify a target in situations where the 
target itself may or may not be present at any given time within the array of 
information presented to the operator. That is, a case of target identification 
under conditions of uncertainty about the actual presence of the target. There 
are numerous examples of military tasks which can be categorized as this kind 
of compound decision task. In Search and Rescue (SAR) operations, search 
operators will be engaged in visual scanning of an area thought to contain a 
crash site. Doctors and technicians frequently examine x-rays looking for 
anomalies. Commanders in a Network Centric Warfare (NCW) environment 
may have to comb through copious streams of incoming data looking for 
potential threats or targets. A United Nations Military Observer (UNMO) may 
be required to help identify a suspected human rights violator from a police 
line-up which may or may not contain the actual perpetrator. For each of these 
examples, it is the combination of uncertainty regarding the presence of the 
target with the task of identification that creates the more complex, and in some 
sense more naturalistic, decision environment. 

1.1 The Compound Decision Environment 

In these kind of compound decision environments, there are two separate 
decision problems that need to be considered. The fact that the target may or 
may not be present defines what is known as a detection problem (i.e., a target-
present vs. target-absent discrimination). On the other hand, in those cases 
where the target happens to be present, picking out the target from among 
similar looking distractors is what is known as an identification problem (e.g., 
choosing the correct answer on a multiple choice test). Traditionally, research 
and theory development has focused on understanding these two decision 
problems in strict isolation (for many examples of such models see Egan, 1975; 
Macmillan & Creelman, 1991). The result has been twofold: A rich corpus of 
decision models aimed at understanding the pure forms of each decision 
problem; and, a dearth of models aimed at understanding complex decision 
tasks formed from a combination of both decision problems. This latter 
outcome is unfortunate because humans in the real world often find themselves 
confronted with compound decision tasks; containing both detection and 
identification components. 
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1.2 Decomposition of the Decision Task 

The proper approach to understanding decisions made within a compound 
decision environment is to decompose the environment’s complexity back into 
its constituent detection and identification components. Decomposition is 
necessary because performance in the kind of complex decision environments 
mentioned above will be determined either separately or conjointly by factors 
which affect the individual detection and identification components. Using a 
congealed metric (i.e., a composite variable comprising both detection and 
identification components) to measure performance in a compound decision 
task can lead to ambiguity regarding the locus of performance. To avoid this 
ambiguity, measuring performance in a compound decision environment would 
entail some method of separating out the constituent effects. The model 
presented in this report was developed with this kind of decomposition in mind. 
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2. Background on the Detection and Identification 
Components 
The model described here has its roots in Signal Detection Theory (SDT), and 
consequently borrows many assumptions from that class of models (for an 
overview see Macmillan & Creelman, 1991). It is important to point out that 
SDT models are primarily decision models. They specify the rules and 
procedures for how decisions are made given certain kinds of information 
(defined in SDT as the decision variable). They generally do not specify, at 
least in any complicated way, how the decision variable is created. On the other 
hand, they do specify how information is used when making a decision. That 
said, this model should not be interpreted as a cognitive theory of the 
acquisition or storage of information pre se (i.e., where information used in the 
decision came from). However, because decision behaviour will be dependent 
on other cognitive processes such as memory storage, retrieval, recoding 
strategies, and decision criteria placement, parameter estimates from the SDT 
decision models can readily be used to make inferences about related cognitive 
processes or cognitive states relevant to the decision process (e.g., the 
robustness of information or factors that affect how the decision criteria are 
used). 

In a very real sense, the proposed model is a compound decision model 
representing the fusion of a SDT detection model and a SDT identification 
model, each representing that particular aspect of the compound decision task. 
The model is a direct variant based on previous work in the area of uncertain 
identification and owes much to the modeling work of Starr, Metz, Lusted, and 
Goodenough (1975) and many others (e.g., Broadbent, 1958; Macmillan & 
Creelman, 1991; Nolte & Jaarsma, 1967; Swensson & Judy, 1981; Tanner & 
Norman, 1954). To better understand how these two aspects of the decision 
model come together, the following is a brief overview of the pure forms of 
detection and identification; each couched in terms of a formalized 
experimental procedure. Following each overview is a description of how the 
pure task can be modeled within the SDT framework. From these pure models 
it will be easier to show how a compound decision model can be constructed. 

2.1 Description of Pure Detection Tasks 

The following pure detection tasks are predicated on the idea of detecting the 
presence or absence of a target stimulus. Hence, there are two classes of 
stimuli, one representing some kind of target, the other representing the 
absence of the target. Although defining the absence of a target as a stimulus 
may seem contradictory, what is important is the relationship between the 
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procedural environment in which the decision takes place and the decision task 
a person is asked to perform. 

2.1.1 Simple Detection 

In a simple detection task, participants are presented with a single 
stimulus that could be either a target or a foil, where the foil is a 
suitable non-target stimulus representing the absence of the target (see 
Egan, 1975; Macmillan & Creelman, 1991). In a simple detection 
procedure, only one of the stimuli is presented on any given detection 
trial. The goal is to detect the presence and absence of the target 
stimulus by properly categorizing the two classes of stimuli as they are 
presented. The extent to which the participant can properly categorize 
the stimuli reflects the participant's ability to discriminate between the 
two classes. In perception research, a foil stimulus might be white 
noise and a target a tone embedded in white noise. In memory research, 
target stimuli could be words that appeared on a previously presented 
list whereas foil stimuli would be any words not presented on the list. 

2.1.2 1-of-m Detection 

Consider a more complex version of the detection task where targets 
and foils are not presented as single stimuli, but multiple stimulus 
arrays (see Macmillan & Creelman, 1991). Now, a trial containing the 
"target" might consist of an array of several foil stimuli plus a single 
target stimulus. Likewise, the "foil" stimulus would be an array 
consisting entirely of foil stimuli. The goal is still the same as in simple 
detection, namely to detect which array contains the target. Note that 
despite the presence of multiple stimuli, the participant is not required 
to identify which stimulus is the target. They are merely required to 
discriminate an array containing the single target from an array that 
does not contain the target. This kind of detection task is often referred 
to as 1-of-m detection because the "target" array is composed of m 
possible stimuli, one of which may be a single target stimulus. 

2.1.3 SDT Approach to Modeling Detection 

The most basic assumption made for SDT modeling of a pure detection 
task is that a target stimulus will, on average, generate a numerically 
larger internal signal than a foil stimulus (Green & Swets, 1974). In 
SDT parlance, the internal signal generated in response to the stimulus 
is called the decision variable. Modeling the task requires a decision 
rule for how to treat the various internally generated signals. The 
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decision rule for simple detection is simply a matter of establishing a 
criterion along the signal continuum. Any stimulus that exceeds the 
criterion is called a target, any that fall below are called foils. 

In 1-of-m detection, the situation is more complicated because there are 
many stimuli (i.e., internal signals) to consider at once. One possible 
decision rule is to evaluate the signals from each stimulus  individually 
(e.g., Swensson & Judy, 1981; Hacker & Ratcliff, 1979). If at least one 
signal exceeds the criterion a target present response is given. Another 
possible decision rule is to sum up all the individual signals. 
Presumably, the sum containing the target will be greater than a sum 
composed of all foils. If the sum exceeds the criterion, the response is 
to categorize the stimulus as a target. 

2.2 Description of Pure Identification Tasks 

Identification differs from detection primarily in the decision task assigned to 
the individual. Instead of detecting a target, the principle task is to uniquely 
specify the identity of a stimulus. In this sense, all the stimuli are targets, and 
the problem is to attach the proper identifying label to each stimulus. 

2.2.1 Simple Identification 

In a simple identification task participants are presented, as in simple 
detection, with a single stimulus from a predefined set. However, the 
task now is to identify the stimulus by specifying the category the 
stimulus belongs to. Such tasks are often used in perception 
experiments where the stimuli might be a set of tones of different 
frequencies; in which case the task is to identify the frequency of each 
tone (e.g., Tanner, 1956). In this kind of task, all of the stimuli are 
"targets" for identification and the difficulty is assigning the correct 
identity to the stimulus. The extent to which the participant can 
correctly identify which stimulus is which reflects their ability to 
discriminate between the stimuli. 

2.2.2 m-Alternative Forced Choice (mAFC) Identification 

Like 1-of-m detection, this task differs from simple identification in 
that there are more stimuli to consider before making a response (e.g., 
Hacker & Ratcliff 1979). For example, in a multiple choice test, all the 
options are presented simultaneously, and each option represents the 
answer to a question. The goal is to identify the answer to the particular 
question being asked. Note that, unlike 1-of-m detection, each option is 
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a possible target in the sense that it is an answer to some question or 
other. This leads back to the important distinction between detection 
and identification tasks. In the latter, a target is always present (or 
assumed to be present). It would not make much sense to have a 
multiple choice exam in which the correct answer did not appear as one 
of the options. The idea that detection represents a "presence versus 
absence" discrimination, whereas identification represents an "always 
present" target identification is crucial to how the these two decision 
problems come together to form the compound decision task. 

2.2.3 SDT Approach to Modeling Identification 

The approach to identification is similar to detection in the sense that 
the decision rule is applied to the internal signals generated by the 
individual stimuli. For simple identification, an identification label is 
applied to the target signal that most closely matches the signal for that 
label. As with 1-of-m detection, the case of mAFC identification 
requires more than one signal to be considered (e.g., Macmillan & 
Creelman, 1991; Smith & Duncan, 2004). For multiple signals present 
with mAFC decision tasks, only one signal will presumably provide the 
closest match to the target to be identified. 

As with detection, the response probabilities need to be transformed to 
represent the fundamental elements in the decision task (i.e., the 
individual signals). The importance of this transformation and how it is 
done will be covered in the next section. 
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3. Fusion of Detection and Identification: SDT 
Compound Decision (SDT-CD) Model 
In both detection and identification, a representation of individual stimulus 
signals must be derived from the observed response probabilities (i.e., the 
proportion of correct responses made in each category). The transformation of 
response probabilities permits a reduction of the decision task down to its most 
basic elements (i.e., individual stimulus signals). Reduction is crucial because it 
provides a fundamental level of representation upon which the detection and 
identification components of the model can make contact with each other 
within the compound decision task. This level of representation is the point of 
fusion between detection and identification. That is, the point at which both 
components rely on the same fundamental source of information. 

The actual form of the transformation depends on assumptions about the 
decision rule used in the compound decision task (Macmillan & Creelman, 
1991). The following section describes the formal characteristics which define 
the compound decision task and the corresponding response probabilities 
associated with it. Subsequent sections describe various decision rules and how 
each rule defines a unique transformation of the response probabilities. Finally, 
the full model is presented. 

3.1 Response Probabilities of the Compound Decision Task 

A complete procedure for conducting experiments using a compound decision 
task which can be applied to the SDT-CD model utilizes both a target present 
(TP) and a target absent (TA)stimulus array as described above. The task of a 
subject in such an experiment is to either identify which stimulus is the target, 
or specify that the target is not present in the array (reject the array).1 Assuming 
the procedure is done correctly, the participant is informed that the target may 
or may not be present, and so discriminating a TP versus TA array is a proper 
case of 1-of-m detection. On the other hand, identifying a stimulus within the 
array as the target is a mAFC identification task. Of course, from the decision 
maker's point of view the target is assumed to be present when a choice is 
made. It does not make much sense for one to make an identification response 
if they believe the target is not present.2  

                                                      
1In some cases the participant may be allowed to respond “don’t know” if they cannot make a determination one way 
or the other (see Wells, 1984). This response option is being omitted from the description for simplicity, but will be 
taken up again later. 

2It is possible to require the participant to make an identification response even though they have specified the 
stimulus array as “target absent”. Such would be the case in tests of subliminal memory (see Macmillan & Creelman, 
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Table 1. Example Data 

Response Choices TP Array TA Array 

Picks Target HT = .53 N/Aa 

Picks Foil FID = .34 FA = .64 

Reject MS = .13 CR = .36 

aResponses in this cell are not defined because the TA array contains only foils. 

 

Table 1 summarizes the compound decision task and defines the various 
response probabilities that can be collected from such a task. Each cell in the 
table is defined by a descriptor variable and represents the possible response 
outcomes. Numerical values in each cell correspond to hypothetical data 
represented as proportions of responses accumulated over many successive 
trials. Also note that the values in each column of the table sum to 1.0. This 
represents the fact that the response options define the complete set of possible 
responses a participant can make regarding either a TP or TA array. 

3.1.1 Response Outcomes for TP Arrays 

When the participant correctly selects the target from a TP array, that 
response is defined as a correct identification with the proportion of 
such responses referred to as the correct ID rate or CID. When a foil is 
selected instead of the target, the response is called a false 
identification with the proportion of such responses referred to as the 
false ID rate or FID. Finally, deciding that the target is not present is 
called a miss with the proportion of such responses defined to the miss 
rate or MS. These response outcomes along with hypothetical values 
are given in the first column of Table 1. 

3.1.2 Response Outcomes for TA Arrays 

When the participant selects a foil from a TA array, the response is 
called a false alarm with the proportion of such responses referred to as 
the false alarm rate or FA. Correctly deciding that the target is not 
present is called a correct rejection with the proportion of such 
responses defined to the correct rejection rate or CR. These response 

                                                                                                                                                        
1991). The model is fully compatible with this kind of decision task, but examination of such procedures are beyond 
the scope of the present report. This issue will be addressed in the discussion. 
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outcomes along with hypothetical values are given in the second 
column of Table 1. Note that the top most cell is not defined for TA 
arrays because no target is present so a correct ID is not possible.3 

3.2 Separation of Observed Response Probabilities 

Before applying the SDT-CD model to data, the observed response 
probabilities from a compound decision task (see Table 1) must first be 
separated into probabilities representing the 1-of-m detection and mAFC 
identification components. These can then be further transformed into response 
probabilities corresponding to individual stimuli according to the decision rule 
assumed to be used by the decision maker. Some of the response probabilities 
corresponding to the detection or identification components can be taken 
directly from Table 1. Others must be derived. 

3.2.1 Detection Components 

The proportion of responses where a participant chooses to identify the 
target in a TP line-up represents the 1-of-m detection hit rate or Hm. 
From the values in Table 1, the 1-of-m detection hit rate is, Hm = 
HT+FID = .53+.34 = .87. Note that the 1-of-m detection hit rate is a 
sum of response probabilities because it represents the decision to 
choose a target, not whether the choice was correct or not. On the other 
hand, the proportion of responses where a participants chooses to 
identify the target in a TA line-up represents the 1-of-m detection false 
alarm rate or Fm. From Table 1, the 1-of-m false alarm rate is, Fm = 
FA = .64. Once computed, these 1-of-m detection probabilities can then 
be transformed into detection probabilities representing individual 
stimuli, where the transformation  depends on the particular decision 
rule that is assumed to be in use for the detection component of the 
compound decision task. 

3.2.2 Identification Components 

Unlike the detection component, response probabilities for the 
identification component are derived from response to TP arrays only. 
For those participants who chose to identify the target in a TP array, 
the proportion who chose the target represents the mAFC hit rate, 

                                                      
3Some experimental procedures in the area of eyewitness memory use TA arrays which contain a mock target called 
an innocent suspect (e.g., Juslin, Olsson,& Winman, 1996). A mock target is used to simulate the real world case 
where the police have arrested an innocent suspect who could be falsely identified as the perpetrator. The use of TA 
arrays with mock targets can be handled in the SDT-CD model by including an additional parameter, but for simplicity 
is being omitted from the general model description. 
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HmAFC. From the response probabilities in Table 1, the mAFC hit rate 
is, HmAFC = HT/Hm = .53/.87 = .61. The proportion of those who 
chose a foil from a TP array represents the mAFC false alarm rate, 
FmAFC. The mAFC false alarm rate is defined to be, FmAFC = 
FID/Hm = .34/.87 = .39. Because the identification component only 
applies to responses where a choice is made from a TP array, the 
transformed proportions are made conditional on the probability of 
choosing by dividing the response probabilities from Table 1 by Hm. 
This conditionalization is an important transformation because it 
deconfounds identification from detection by separating out the 
influence of the detection probability from the identification 
probabilities. That is, identification is confined to choosing the target 
from among the foils when the target is present, regardless of how 
likely one is to want to make that choice in the first place (i.e., 
detection). Mathematically, conditionalizing causes the sum of 
HmAFC and FmAFC to be 1.0. As with the detection probabilities 
computed above, the values of HmAFC and FmAFC are applied to the 
model depending on the decision rule assumed to govern identification. 

3.3 Decision Rules and the SDT-CD Model 

The fusion of the models for detection and identification operate at the 
fundamental level of individual stimuli. Hence the decision rules for each 
component will also operate at the level of individual stimuli. With the 1-of-m 
detection and identification response probabilities extracted from the observed 
response probabilities (like those given in Table 1), they can be further 
transformed to represent response probabilities for individual stimuli according 
to the decision rule. Borrowing from previous SDT work (e.g., Starr et al, 
1975; see also Macmillan & Creelman, 1991), two decision rules for detection 
and one for identification were explored in the development of the SDT-CD. 

3.3.1 Decision Rules for Detection 

For detection, the two decision rules are the independent observation 
rule and the integration rule.  Both of these were adapted to the SDT-
CD model from versions of SDT models developed for pure 1-of-m 
detection tasks. Once the 1-of-m detection response probabilities have 
been transformed to fit the decision rule, the standard SDT model for 
1-of-m detection using that decision rule can used to fit the detection 
part of SDT-CD. 
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1. Independent Observation Rule 

This is a well known decision rule in perception and memory research. 
Decision variables are assigned values independently for each stimulus 
in the array, then all decision variables are compared to a single 
criterion (Hacker & Ratcliff, 1979; Macmillan & Creelman, 1991; 
Starr et al, 1975). A "target present" response is made if at least one 
stimulus exceeds the criterion. Assuming response probabilities 
representing the detectability of individual stimuli could be measured, 
a simple detection model could be used to estimate parameters 
corresponding to the detectability of the target stimulus in the array. 
However, unless the detectablility of a single stimulus is directly 
measured beforehand, it must be inferred from 1-of-m detection 
probabilities. Fortunately, such inferences can be made given the 
constraints of the independent decision rule. 

A false alarm occurs in 1-of-m detection when at least one of the m 
foils of a TA array exceeds the criterion. Given all possible 
combinations of foils falling above or below the criterion, Fm is 
equivalent to one minus the probability of all foils falling below the 
criterion. Consequently, the 1-of-m false alarm rate can be expressed as 
a function of the false alarm rate of an individual stimulus by, 

( )mFFm 111 −−=                                           (1) 

where F1 is the false alarm rate of an individual stimulus.4 By 
rearranging Equation 1, an estimate for F1 can be computed from Fm 
by, 

( )mFmF
1

111 −−=                                           (2) 

A hit in 1-of-m detection occurs when at least one of the stimuli in a 
TP array, the m-1 foils or the target, exceeds the criterion. Applying 
similar logic as before, this will be equal to one minus the probability 
of all m-1 foils and the target falling below the criterion. This is 
expressed as, 

( )( ) 111111 −−−−= mFHHm                                  (3) 

where H1 is the hit rate for the target. Rearranging to isolate H1 and 
substituting Equation 2 for F1 gives, 

                                                      
4Here it is assumed the false alarm rates of individual foil stimuli are all equal. 
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( ) ( ) m
m

m
m

FmHmFmH
−−

−+−−=
11

1111                        (4) 

The estimates for F1 and H1 represent the response probabilities for 
individual stimuli according to the independent observation rule. These 
response probabilities can now be fit with a standard simple detection 
SDT model. In other words, the detection component of SDT-CD is 
just a simple detection SDT model applied to response probabilities 
transformed from the compound decision task according to the 
independent observation rule. 

The standard simple detection SDT model contains two parameters. 
The first, called d′, is a measure of how well a person can discriminate 
the presence of a target from foils. Larger values imply better 
discrimination. The other parameter called c, is a measure of response 
bias. Response bias represents a person's willingness to choose a target 
from the TP or TA array and is assigned a value of d′/2 when 
responding is unbiased (i.e., when there is no difference in preference 
between choosing and rejecting). The response probabilities F1 and H1 
can be written as functions of d′ and c, 

∫
∞

′−=
c

dxdxfH )(1                                         (5) 

∫
∞

=
c

dxxfF )(1                                              (6) 

where the function f(•) is the normal density function. Once the model 
is fit to the simple detection response probabilities, fitted probabilities 
can then be transformed into fitted observed response probabilities 
using Equations 1 and 3. 

2. Integration Rule 

This decision rule is similar to the independent observation rule in that 
values are assigned to each stimulus in the array. However, the actual 
decision variable is the sum of all the stimulus values, which is then 
compared to a criterion (see Graham, Kramer, & Yager, 1987; Tanner 
& Norman, 1954). If this sum exceeds the criterion, a target present 
response is made, otherwise a target absent response is given. Unlike 
the independent observation rule, no transformation of the 1-of-m 
detection probabilities is necessary for this rule. Consequently, Hm and 
Fm can be computed directly, 
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dx
m

dxfHm
c
∫
∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
−=                                       (7) 

∫
∞

=
c

dxxfFm )(                                             (8) 

where m is the number of stimuli in the array. 

3.3.2 Decision Rules for Identification 

For identification, the decision rule adopted was an unbiased 
independent observation rule (e.g., Hacker & Judy, 1979; Starr et al, 
1975). Specifically, it is assumed that people use a standard SDT 
mAFC decision rule to select a target once they have decided the target 
is present (i.e., using one of the detection decision rules described 
above). The general form of this rule is to choose the stimulus whose 
value of the decision variable most closely matches the intended 
identification target. In the model, the mAFC hit-rate is defined as the 
probability that similarity of the target stimulus to the intended 
identification target exceeds all of the foil stimuli across all possible 
values of the target stimulus. This unbiased probability, as a function 
of d′, can be written as, 

∫ −′−= dxxzdxfHmAFC m 1)()(                               (9) 

where z(x) is the inverse normal function, m is the array size, and d′ in 
this equation refers to the same d′ as in Equation 7. Note that the limits 
of integration (not shown) run from negative to positive infinity 
because the probability of the target having a value larger than all foils 
must be computed for all possible values of the target decision 
variable. 

3.4 Estimates Derived from Fitting the Model 

Fitting the model to data produces model estimates for each of the observed 
response probabilities and two parameter estimates, 

• d′, detectability of the target from the foils in identification and detection. 

• c, willingness to choose a target from the stimulus array. 
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The extent to which the estimated response probabilities match the observed 
probabilities is a measure of how well the model fits the data. The parameter 
estimates are a summary explanation of what decision mechanisms were 
responsible for creating the data according to the model. In SDT-CD, the model 
explains the data in terms of the parameters d′ and c. 

It is important to consider the relationship between Equations 5, 7, and 9, in 
that d′ in each equation refers to the same quantity, namely, the detectability of 
the target stimulus relative to the foils. This is the point where detection and 
identification fuse in the SDT-CD model because both decision components are 
assumed to depend on the same quantity, viz., the detectability of a target 
among foils. This is also why estimates of d′ requires that response 
probabilities for detection and identification are fit simultaneously. This 
approach is where SDT-CD differs from other SDT models (e.g., Starr et al, 
1975) and other process models of the compound decision task (e.g., Clark, 
2003). 

Because identification is assumed to be unbiased, parameter c does not occur in 
the identification equation. Hence, the bias parameter only refers to the 
detection component. However, the decision rule for identification is such that 
it could be assigned a separate response bias parameter. Doing so would not 
create problems for model validity. Although treating identification responses 
as biased would add an extra parameter to the model, it would also increase the 
number of free data points by an equal amount. Consequently, the fit of the 
model would not become over parameterized if such a change where 
implemented (for issues of over-parameterization see Pitt, Myung, & Zhang, 
2002). However, the assumption that identification could be biased was not 
included in the present version of the SDT-CD model for several reasons. First, 
estimating bias for identification requires collection of considerably more data. 
In most experimental contexts, the practicality of such data collection is 
untenable for array sizes greater that two. Second, the interpretation of bias in 
identification is much different that detection. Identification bias is a propensity 
to favour a certain location in the array as containing the target. In some 
contexts, this may represent a variable of theoretical interest, but in most cases 
it is simply a nuisance variable. 
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4. Demonstrations 
In this section the model is fit to several data sets representing various kinds of 
compound decision tasks. The purpose of these demonstrations is, (a) to show 
that the model can fit data from compound decision tasks, and (b) that 
parameter values derived from the model can be meaningfully interpreted with 
respect to experimental conditions. Actual choice of data sets was determined 
by a number of factors; including whether the experimental procedure used met 
the requirements for a full compound decision task, and whether it was possible 
to obtain access to the full data set. Given these requirements, choice was 
limited to only a handful of data sets, but these still managed to span across 
some diverse areas of research in compound decision tasks. 

Because the chosen experiments were not conducted with the model in mind, 
the various experimental conditions are not necessarily the best choice with 
which to showcase the model's strengths or test assumptions of the model. In 
general, the model is not being used as a predictive model; at least in the sense 
that the parameter values for various experimental conditions are predicted a 
priori by the model. Instead, SDT-CD like most SDT decision models is a 
descriptive model. The value of descriptive models lies in changes to parameter 
values across conditions, providing a simplified interpretation of data from 
tasks where a direct analysis of the raw data would be a complicated affair; 
enough to cause misinterpretation of the results. I have argued that this is the 
case with compound decision tasks. Understanding the results from a direct 
analysis of the raw data can be difficult and tedious without the benefits of a 
proper model to simplify the results. The test of the model is grounded in how 
well it fits the data, and whether changes to parameter estimates across 
conditions make some theoretical sense. 

Two separate models were created from a factorial combination of the two 
detection decision rules with the single identification decision rule. The two 
models were labelled Independent Observation and Integration referring to the 
varying detection decision component (note that the identification rule does not 
change). For each demonstration, the fit of both models was compared and the 
best fitting decision model chosen for any subsequent analysis of the data. 
Optimal parameters were found by non-linear optimization of the likelihood 
function compiled from Equations 5, 6, and 9 for the independent model, and 
Equations 7, 8, and 9 for the integration model (see Olgilvie & Creelman, 
1968; Eliason, 1993; the exact equations used are given in Annex A). 
Optimization of the likelihood functions was done using the program 
Mathematica (Wolfram Research Inc., 2005). To ensure a good local minimum 
was reached, the optimization procedure was rerun several times on each data 
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set using different parameter values. Goodness-of-fit was assessed using a χ2 
test. 

Fitting the model to a data set results in estimates of each response probability 
and corresponding values of the two parameters. Because the goal is to obtain 
model estimates that are as close to the data as possible, one is actually hoping 
for a non-significant test result when comparing the data to model estimates. 
This is opposed to wanting a statistically significant result, as is usually the 
case in statistical analysis. Owing to the fact that the various experiments were 
not designed to test the model, one should be cautious of accepting a good fit. 
Consequently, a liberal rejection criteria of .10 was adopted for all χ2 goodness-
of-fit tests making it easier to reject the fit of the model. Both the Integration 
and Independent Observation decision models were fit to all data sets to 
determine which decision rule best fit the data. The implications for this will be 
taken up in the discussion section. 

4.1 Tumour Detection in X-rays 

This demonstration was conducted on data from an experiment by Starr et al 
(1975) designed to simulate the detection of tumours in chest X-ray 
radiographs. The study was originally conducted to test a compound decision 
model that is analytically identical to SDT-CD. The key difference between 
their model and SDT-CD is the assumption by Starr et al that detection and 
identification do not share the same d′ parameter. In contrast, SDT-CD adopts 
the strong assumption that descriminability in detection and identification are 
derived from the same decision variable. In addition, the Starr et al model was 
limited to the Independent Observation rule. SDT-CD is very much an 
extension of the Starr et al model; albeit one that is more theoretically 
constrained but also more flexible to permit assessments of optimality in 
decision making. In their paper, the test of the Starr et al model was to predict 
identification Receiver Operating Characteristic (ROC) curves from detection 
ROC curves using an independent observation decision rule. The point of this 
demonstration is to use SDT-CD to test the difference between the two decision 
rules described above: Independent Observation and Integration. 

For the experiment, sample radiographic images displaying the typical random 
mottling found in X-rays of chest tissue were created either with or without the 
faint image of a tumour. The presence of a tumour was simulated using a 
circular disk exposed onto the radiographic image. Each sample radiograph was 
divided into four quadrants, one quadrant of which may or may not have 
contained a faint image of a tumour. On each trial, subjects were shown a 
sample radiograph containing four quadrants and asked to either reject the 
image as tumour free, or indicate which quadrant contained a tumour. This 
procedure is therefore one in which all stimuli in an array are presented 
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simultaneously. Because of experimental control over the creation of sample 
radiographs, it was possible to run each subject for approximately 100 trials per 
session over two sessions. The two sessions were conducted consecutively with 
a short break in between. Subjects were all Subject Matter Experts (SME) in 
the area of radiographic imaging and research consisting of 4 physicists and 1 
technician. 

For this demonstration, data were divided into separate sessions. Both model 
parameters, d′ and c, were allowed to vary across sessions. The Integration 
model provided the best fit to the data, resulting in a non-significant deviation, 
χ2(2) = 0.47, p < .80. Fit of the Independent model, on the other hand, produced 
a significant deviation from the data, χ2(2) = 7.88, p < .02. Table 2 shows the 
data along with the fitted response probabilities produced by the Integration 
model. For brevity, only the FA, HT, and CID rates are shown.5 An 
examination of Table 2 reveals that the response probabilities produced by the 
Integration model are very close to the observed data. The good fit of the 
Integration model implies two things. First, that detection and identification are 
yoked in the sense they are dependent on the same information (internally 
generated signal). Second, the decision rule which best describes the one used 
by subjects is the Integration rule. 

 

Table 2. Results from the Tumour Detection Task. 

 Session 1 Session 2 

Responses Data Model Data Model 

FA .33 .30 .30 .28 

HT .63 .65 .68 .69 

CID .50 .50 .58 .58 

Parameters  

d′ 1.81 2.12 

c 0.53 0.57 

 

                                                      
5The remaining response probabilities can be computed from FA, HT, and CID, viz., CR=1-FA, MS=1-HT, and 
FID=HT(1-CID/HT). Hence, for this kind of compound decision experiment, there are only 3 degrees of freedom in the 
data. 
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Although there were no a priori predictions made for this demonstration, an 
examination of the parameter values reveals a few interesting observations. 
Because the subjects were all SMEs well practiced in reading radiographs, one 
would expect good performance with little change across trials. It is also 
reasonable to assume that these SMEs would adopt an optimal decision rule. 
Finally, given the dire implications for failing to detect a tumour, one might 
expect SMEs to adopt a fairly liberal criterion for deciding that a tumour is 
present. In keeping with the first of the expected results, values of d′ are good 
for a detection memory task (e.g., 2.0-2.5, see Smith & Duncan, 2004) and 
there was only a slight change across sessions. As for the second expected 
outcome, the best fit of the Integration decision rule implies that these SMEs 
did not employ an optimal decision rule. Finally, the detection criterion for 
both sessions was below the value of d′/2, indicating the SMEs were liberal in 
their willingness to identify the presence of a tumour. However, the criterion 
was not as liberal as might be expected, especially considering  the results from 
the next four demonstrations. It is possible the SMEs did not adopt a more 
liberal criterion because of the artificiality of the task. 

4.2 Eyewitness Identification After Interrogation Stress 

In a study on eyewitness memory, Morgan, Hazlett, Doran, Garrett, Hoyt, 
Thomas, Baranoski, and Southwick (2004) examined the effect of interrogation 
stress on the ability of subjects to later identify their abusers. The study was 
conducted in coordination with military survival school training offered to US 
military personnel. Relevant to the study was the part of the survival course 
involving wilderness evasion followed by mock captivity and interrogation in a 
prisoner of war camp. The rationale was to determine how stress would affect 
memory when tested in a naturalistic setting using a more applied memory test 
(eyewitness identification). Previous research has shown that memory for 
events perceived under stress can be good in controlled experimental settings 
(e.g., Canli, Zhao, Brewer, Gabrieli, & Cahill, 2000; Gold, 1992), but poor in 
naturalistic settings such as those experienced by military combat veterans 
(e.g., Roemer, Litz, Orsillo, Ehlich, & Friedman, 1998; Southwick,  Morgan, 
Nicolaou, & Charney, 1997). However, because interrogation is a more 
perceptually focused experience free from many of the distractions found in 
combat, it was unclear how stress would affect eyewitness identification. For 
this demonstration, the two key interests were the effect of stress on both 
eyewitness performance and the decision rule used  by subjects. 

A total of 530 active-duty US military personnel enrolled in the survival course 
participated in the study. Subjects experienced both high and low-stress 
interrogations. High-stress involved actual physical confrontation of the trainee 
by the interrogator and a guard during the interrogation session. For the low-
stress condition the physical confrontation was removed while maintaining all 
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other aspects of the interrogation. Both the interrogator and the guard were 
unfamiliar to the subjects. The interrogation sessions lasted approximately 40 
minutes and were conducted 4 hours apart. Order of interrogation stress was 
counter-balanced across subjects. In addition, all subjects experienced 48 hours 
of food and sleep deprivation before the interrogation sessions. Approximately 
24 hours after the last interrogation session, subjects were released from the 
their mock captivity and given access to food and water. The eyewitness test 
was then administered in one of the school classrooms using a live line-up of 
survival school instructors acting as foils. The TP line-up included the subjects' 
interrogator. Like Demonstration 1, this experiment employed a simultaneous 
presentation procedure. There was only one presentation trial so each subject 
supplied a single response. 

To test the effect of stress, both model parameters were allowed to vary across 
each interrogation condition. Models for both decision rules showed significant 
deviations from the data, with the Integration model producing a far better fit, 
χ2(2) = 11.7, p < .01, than the Independent model, χ2(2) = 40.5, p < .001. Table 
3 shows the results of the study and the fit of the Integration model.  Although 
the goodness-of-fit test for the Integration model was significant, the main 
point of error in predicted response proportions occurs in the FA rates. 
Otherwise, the model produced a very good fit to the HT and CID rates.  

 

Table 3. Results from the Interrogation Stress Eyewitness Task. 

 High Stress Low Stress 

Responses Data Model Data Model 

FA .45 .59 .50 .65 

HT .85 .71 .95 .83 

CID .26 .25 .62 .57 

Parameters  

d′ 1.26 2.24 

c -.023 -.039 

 

Part of the reason for the worse fit is likely do to the experimental procedure 
used for the eyewitness test. The decision rules for both models assumes that 
all foils are all equally discriminable from the target. However, because the 
line-up foils were not standardized before testing it is possible this assumption 
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of the model was violated in the experimental procedure. Despite this the 
model results are quite striking. Performance in identifying the abuser in the 
low stress condition was almost twice as good as in the high stress condition. 
This result is consistent with the results of laboratory research despite the study 
being conducted in a naturalistic setting. Although Morgan et al (2004) reached 
a similar conclusion concerning better performance in the low stress condition, 
it was not so obvious from their onerous multiple comparisons of the various 
response proportions. The simple summary analysis provided by the model, 
that of reducing the complex data set down to a single value representing 
performance provided a clearer picture of the data. In addition, one important 
aspect of the experiment captured by the model was not mentioned in the 
analysis of Morgan et al. Namely, the fact that both groups showed a strong 
willingness to choose a perpetrator from the line-up (i.e., both adopted a very 
liberal response criterion). Although the model is over-estimating the FA rate 
of subjects, a strong bias to choose is still plainly evident (c.f. Demonstration 
1). The failure of Morgan et al to mention response bias is not so surprising 
given that conventional analysis of response proportions do not provide an easy 
means of obtaining explicit measures of willingness to choose. It is unclear 
why subjects chose such a liberal response criterion, but it may have reflected 
the training atmosphere in the school, or pressure to be seen by the command 
hierarchy as producing a positive response. 

4.3 Verbal Overshadowing Effect in Eyewitness Memory 

Previous research in eyewitness memory has shown that performance in 
eyewitness tasks can be very low. Techniques to improve memory, such as 
producing a verbal sketch of the perpetrator in an eyewitness event, have been 
found to influence subsequent eyewitness performance. The effect on 
eyewitness memory of verbally re-describing (or recoding) an eyewitness event 
is called the Verbal Overshadowing Effect (VOE). Because the area of 
eyewitness research has lacked a coherent model of the eyewitness task (such 
as SDT-CD), debate in the literature has focused on performance vs. response 
bias as the locus of effect for the VOE. Because performance and bias are two 
key aspects de-confounded in the SDT-CD model, this data set is uniquely 
suited to an analysis by the model.  

The data in this demonstration came from an experiment by Clare and 
Lewandowsky (2004) who manipulated the type of recoding subjects engaged 
in after viewing a staged crime event. Subjects were assigned to one of three 
conditions, two of which involved re-remembering the event by focusing on 
describing the global pictorial features (Holistic) or creating a point-by-point 
verbal description (Verbal). The Verbal condition was the standard VOE 
manipulation which has previously shown effects on eyewitness memory. The 
Holistic condition represented a way of re-remembering designed to minimize 
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the impact of VOE on eyewitness memory. Approximately 2 hours after 
witnessing the staged event, subjects in the Verbal and Holistic conditions were 
given instructions to re-remember the event followed by an eyewitness test 
consisting of either a TP or TA array of size 6. Subjects in the control condition 
were not given any specific instructions for re-remembering the event, but 
instead were given the eyewitness test after performing 2 hours of unrelated 
activities. Like the previous demonstration, each subject was shown a single 
stimulus array (TA or TP) and hence provided only a single response in the 
experiment. 

The approach to modeling taken in this demonstration was to create two 
versions of the SDT-CD model each representing one of the hypotheses to be 
tested; performance and bias. This was done by constraining parameter values 
across the three conditions. The criterion hypothesis was represented by an 
SDT-CD model in which d′ was held constant but c was allowed to vary across 
conditions. The performance hypothesis was represented by a model in which 
d′ varied but c was held constant.  If the data correspond to one or the other 
hypotheses, then one model should fit while the other model is rejected. Before 
testing each model hypothesis, an initial fit of the unconstrained Independent 
and Integration models was done to determine which decision rule was best 
supported by the data. For these unconstrained fits, both parameters were 
allowed to vary across all three conditions. 

 

Table 4. Results from the Criterion Hypothesis Model.a 

 Control Holistic Verbal 

Responses Data Model Data Model Data Model 

FA .77 .75 .48 .47 .48 .40 

HT .93 .95 .81 .82 .64 .74 

CID .80 .80 .69 .70 .57 .63 

Parameters  

d′ 2.42 2.42 2.42 

c -0.68 0.08 0.33 

aFor this model, d′ was held constant while c was allowed to vary across conditions. 
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The initial goodness-of-fit test resulted in a good fit of the Integration model, 
χ2(3) = 5.38, p < .15, but a significantly poor fit of the Independent model, χ2(3) 
= 119.47, p < .001. Given the initial fit results, models for each hypothesis were 
fit using the Integration decision rule. The outcome of the hypothesis tests were 
clear. The model representing the criterion hypothesis showed a good fit to the 
data, χ2(4) = 5.45, p < .37, while the model representing the performance 
hypothesis was rejected, χ2(4) = 19.12, p < .001. Data and model fit for the 
criterion hypothesis model are shown in Table 6. The obvious conclusion from 
these tests is that VOE causes a shift in response criterion but has no 
appreciable effect on performance. 

In some sense this is a surprising result for it implies that recoding (or re-
remembering) by verbally describing a previous eyewitness event has little 
effect on performance. Instead, it appears to profoundly effect response bias. 
From Table 6, subjects in the Verbal (VOE) condition were the most 
conservative in their willingness to select the perpetrator from the line-up. The 
Holistic condition also made subjects more conservative, but not quite as much 
as the Verbal group. The conservative bias of these two groups was in stark 
contrast to the control group who showed a strong willingness to identify the 
perpetrator; much like that seen in Demonstration 2.  

4.4 Search and Rescue 

This final demonstration utilizes data from a Search and Rescue (SAR) 
experiment conducted by Stager and Hameluck (1986). The purpose of their 
experiment was to derive a normative set of identification probabilities for 
modeling real life SAR by simulating a SAR operation using static naturalistic 
images. In the SAR task, they used actual aerial photographs of various terrain 
taken from two different altitudes (500 and 1,000 ft) and two different visual 
angles (vertical and 45º oblique) forming a 2×2 factorial set of images. A 
simulated crash site was painted within one of six randomly selected quadrants 
to create TP stimuli. Images representing TA stimuli were left unchanged. The 
photographs were projected on a screen approximately 5ft square so as to fill 
40º of the subject's viewing angle. Like the tumour detection task of 
Demonstration 1, all subjects were SMEs in SAR and were run through 
approximately 100 trials of TA and TP stimulus arrays. On each trial SMEs  
were required to identify the location of a crash site or reject the image as not 
containing one. Like all previous demonstrations, the stimulus array was 
presented simultaneously. 

Although the purpose of this experiment was not to compare altitude and visual 
angle, it seemed appropriate to compare these two factors as they were the only 
variables that were manipulated. The Independent and Integration models were 
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fit to data set allowing both parameters to vary across all four conditions.6 
Unlike the previous demonstrations, the Independent model produced a good 
fit, χ2(4) = 6.91, p < .15, with the fit of the Integration model rejected as 
significantly deviating from the data, χ2(4) = 14.2, p < .007. Given this result, 
all subsequent model fits used the Independent decision rule model. 

As in Demonstration 3, separate reduced models representing performance and 
criterion hypotheses were created to assess which of these two characteristics 
(or both) were affected by each factor (altitude and angle). For altitude, neither 
the performance hypothesis model, χ2(3) = 0.51, p < .90, nor the criterion 
hypothesis model, χ2(3) = 0.62, p < .89, could be rejected as both showed good 
fits to the data. A reduced model was fit to the altitude data producing a good 
fit when both parameters were held constant, χ2(3) = 0.61, p < .96. In contrast, 
fitting each hypothesis model to data in the angle condition produced a 
different pattern of results. The criterion hypothesis model was rejected, χ2(3) = 
7.45, p < .02, whereas the performance hypothesis was not, χ2(3) = 1.93, p < 
.60.  The data for each condition and model fits are shown in Table 6. 

 

Table 5. Results from the SAR Task. 

 Altitudea Angleb 

 500 ft. 1,000 ft. Oblique Vertical 

Response Data Model Data Model Data Model Data Model 

FA .31 .34 .32 .34 .37 .34 .27 .34 

HT .85 .85 .86 .85 .82 .82 .89 .88 

CID .72 .71 .67 .71 .66 .65 .74 .76 

Parameters  

d′ 2.30 2.30 2.15 2.46 

c 1.50 1.50 1.50 1.50 

aReduced model with both d′ and c constant across conditions. 

bReduced model with only c constant across conditions. 

 

                                                      
6The four conditions created by the 2×2 factorial design where treated as separate. 
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The results of the model fitting suggest that altitude has little effect on 
identification of a crash site, at least in the context of this simulated SAR task. 
On the other hand, viewing angle appears to affect performance in identifying a 
crash site (vertical is better than oblique), but has little effect on willingness to 
choose a target. The fact that the Independent Observation model showed the 
best fit implies the SMEs in this experiment were using an optimal decision 
rule for the task. This is perhaps not so surprising as these particular SMEs 
were trained to scan each quadrant of the target area in a systematic fashion 
(McFadden, personal communication, November 24, 2006). This type of 
training would lead to separate assessments of each stimulus in the array; 
which is consistent with the assumptions of the Independent Observation rule. 
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5. Discussion and Conclusions 
This section provides a summary of the model fits to the demonstration data 
sets, as well as a  discussion of the model's advantages and other issues related 
to modeling compound decision tasks. A comparison of SDT-CD to other types 
of models and possible future directions are also discussed. 

5.1 Summary of Model Fits 

• Overall, the model fit 3 out of 4 data sets very well. Two of the data sets 
(Demonstrations 3 and 4) allowed for testing of models representing 
different theoretical hypothesis. The hypothesis tests illustrate the diversity 
of using SDT-CD as a statistical analysis tool to help better understand 
data. In the case of data from Demonstration 2 (eyewitness identification 
after interrogation stress), two possible reasons for the poor fit are that the 
SDT-CD model is simply wrong, or the experimental procedure violated 
assumptions of the model. Although the former is certainly a possibility, the 
fact that line-up foils were not pre-screened to ensure homogenous 
similarity to the target makes it impossible to know with certainty which 
explanation is correct. For comparison, foils used in the eyewitness line-ups 
of Demonstration 3, where the model showed a good fit, were pre-screened 
for similarity to the target. 

• The results from the demonstrations also revealed an interesting trend in 
subject's choice of decision rule. In 3 out of 4 data sets, the Integration 
decision rule produced the best fit. Only the data from Demonstration 4 
showed a superior fit of the Independent Observation rule. This has 
implications for decision making because the model decision rules do not 
differ merely on the basis of strategic approach to the task. When decision 
making is expressed in terms of optimal use of information for maximizing 
the discrimination of foils from target, the two decision rules presented here 
occupy opposite ends of the spectrum. The Independent Observation rule is 
by far the more optimal decision rule; being nearly equivalent to the 
analytically defined maximum likelihood optimum for the SDT-CD model 
(Graham, et al 1987). The Integration rule, on the other hand, is far from 
optimal. Although the sample of data sets is small, the pattern is quite clear. 
People are more likely to employ a non-optimal decision strategy when 
faced with a compound decision task. This conclusion is supported by a 
recent fit of SDT-CD to several data sets exclusively within the eyewitness 
domain in which a vast majority were best fit by the Integration rule 
(Duncan, 2006). 



  
 

26 DRDC Toronto TR 2006-256 
 
  
 

• The decision rule which best fit the data in each demonstration is also 
related to variations in how the task was approached by subjects. The three 
data sets that were best fit by the Integration rule all used subjects and 
SMEs with no explicit training on how they should perform the task. The 
data from Demonstration 4 however, employed SMEs who where given 
explicit training to assess the array stimuli in a manner consistent with the 
optimal decision rule. This implies two conclusions. First, that the model 
can be used to assess whether subjects are using an optimal decision rule. 
Second, that training in procedures consistent with the optimal decision rule 
lead to optimal decision making. There is also a suggestion that procedural 
changes can cause use of the optimal decision rule. In the area of 
eyewitness identification, it has been argued that sequential presentation 
(array stimuli presented 1 at a time instead of simultaneously) encourages 
the use of the optimal decision rule by discouraging global assessment 
strategies like the Integration rule (e.g., Clark & Davey, 2005; McQuiston-
Surrett, Malpass, & Tredoux, 2006; Steblay, Dysart, Fulero, & Lindsay, 
2001). Although not explicitly tested here, SDT-CD can also be used to 
assess this claim. 

5.2 Advantages of the Model 

There are three distinct advantages to using SDT-CD for analysis of data from 
compound decision tasks like those described here. For the most part, the 
advantages of SDT-CD derives from the transformation of the complex 
interplay of response probabilities into parameter values representing simple 
measures of performance and response bias. 

5.2.1 Simplification of Data Analysis: Separation of Performance 
from Bias 

First, and possibly foremost, is the simplification of data analysis and 
interpretation. The standard compound decision task generates three 
separate sets of response probabilities, FA/CR, HT/MS, and CID/FID. 
A more traditional analysis would be to conduct separate comparisons 
for each set. For an experiment with only two conditions, this type of 
analysis would produce three distinct significant or non-significant 
outcomes (from a total of eight possible). With three experimental 
conditions, one would be faced with interpreting the pattern of 
significance from as many as nine pairwise comparisons. Clearly, the 
complexity of a conventional the data analysis grows geometrically 
with number of experimental conditions. Even with only three, one is 
faced with an overwhelming pattern of test results from which to 
derive effects on performance. In contrast, a three condition experiment 
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fit with SDT-CD would require at most three comparisons. A two 
condition experiment requires only one. 

To compound the complexity problem, it is not obvious from a 
conventional analysis whether significant differences in response 
probabilities reflect changes in performance, changes in response bias, 
or both. Because SDT-CD deconfounds the effects of performance 
from response bias, interpretation of the data is not only simplified, but 
also much clearer as to how experimental conditions affect decision 
making. 

5.2.2 Tests for Optimal Decision Making 

Another key advantage of SDT-CD is the ability to test whether people 
are using an optimal decision  rule. As shown in the demonstrations, 
both the Integration and Independent decision models do not always fit 
equally well, so some assessment of optimal rule use can be made. 
Unlike conventional analysis of response probabilities which provide 
no information about rule use per se, tests for optimal decision making 
are trivial to obtain using SDT-CD. 

5.2.3 Explicit Hypothesis Testing 

As shown in Demonstrations 3 and 4, SDT-CD can be used to test 
specific hypotheses regarding performance and response bias. The 
general approach is to use theory to constrain parameter values across 
experimental conditions and test the fit of the model. In a statistical 
sense, SDT-CD takes on the role of the traditional Null Hypothesis. 
Rejecting the fit of the model amounts to rejecting the Null Hypothesis. 
This approach to models is by no means a unique property of SDT-CD, 
and has been widely employed as a general approach in many areas of 
cognitive modeling (for examples see Pitt et al, 2002). 

5.3 Extensions of SDT-CD 

The SDT-CD model is adaptable to variations of the standard compound 
decision task. Given its SDT roots, the model can generally be adapted to 
variations open to other SDT-like models. 

5.3.1 Extra Response Options: "Don't Know" and Confidence 

Previously it was mentioned that some experimental procedures, 
particularly in the field of eyewitness identification, have added a 
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"don't know" response option. Other procedures require subjects to 
make confidence ratings about their decision. The addition of response 
options and confidence ratings are typically handled within a SDT 
framework by adding extra criteria to the model. These extra criteria 
are used to divide each confidence category in the same way the single 
detection criteria is used to divide the FA and HT rates. In the case of 
SDT-CD, the same approach can be used to easily implement "don't 
know" and confidence ratings into the model. SDT, and by implication 
SDT-CD, treat the former as just a special case of the latter. That is, 
"don't know" responses are treated as low confidence responses. 
Although not presented as a demonstration, data from Wells, Rydell, 
and Seelau (1993) was well fit by a SDT-CD model extended to 
include the addition of "don't know" responses that was added to their 
procedure. An example of modeling confidence can be found in Starr 
et al (1987), who successfully fit a version of SDT-CD to confidence 
ratings data. 

5.3.2 Calibration 

The ability to handle confidence ratings makes SDT-CD immediately 
applicable as a model for examining confidence calibration (i.e., the 
confidence/accuracy relation, see Baranski & Petrusic, 1994; Brewer, 
Keast, & Rishworth, 2002; Olsson, Juslin, & Winman, 1998; 
Wagenaar, 1988).7 The SDT approach to calibration has been 
theoretically formalized by Gu and Walsten (2001), and SDT-CD 
borrows directly from this work. To model calibration, traditional 
confidence categories are assigned probability values instead of 
confidence labels (e.g., 80% instead of "very sure"). As in ratings data, 
criteria are used to separate the calibration categories and then fit to the 
model in the same manner as confidence ratings. The key importance 
of SDT-CD as a calibration model is that all of the advantages of 
modeling compound decision tasks can be readily extended to the 
study of calibration in these decision tasks as well (e.g., separation of 
performance and bias, simplicity of analysis etc). 

                                                      
7A distinction is made here between probability calibration (e.g., Ferrell, & McGoey, 1988) and confidence calibration 
(e.g., Baranski & Petrusic, 1994). The former refers to the relationship between subjective probability estimates and 
objective probabilities. Although procedurally there is often little difference between the two in experimental settings, 
the approach to modeling calibration in SDT-CD is equivalent to how the model handles confidence ratings. This 
implies a tighter theoretical binding between subjective probability and confidence that is not implied in probability 
calibration research. 
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5.3.3 Subliminal Effects on Decision Making 

Presumably there may exist stimuli in the decision environment which 
can have an unconscious affect on decision making. These would be 
stimuli of which the decision maker is not only unaware, but which 
they cannot become consciously aware. The effects of such stimuli, 
should they be presumed to exist, can be examined using SDT-CD 
without changes to the model itself. The primary change occurs 
experimentally, by presenting a subliminal stimulus on some trials and 
requiring subjects to provide an additional identification response on 
all trials where they have indicated that no target is present. Analysis of 
such data can be done by restricting analysis of responses to subliminal 
TP presentations. 
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6. Recommendations 
• Scientist should be encouraged to employ more naturalistic compound 

decision tasks in research settings. Barriers that may have prevented the use 
of compound decision tasks, such as complexity of data analysis, can be 
overcome with the use of SDT-CD. 

• Researchers using compound decision tasks should be cognizant of 
ensuring the full standard procedure is represented in the task environment 
(e.g., use of both TP and TA arrays). This will permit the use of SDT-CD in 
data analysis, by those conducting the research or by others who may have 
an interest. 

• Decision makers should try to encourage use of the optimal decision rule by 
training SMEs to individually assess each array stimulus (i.e., SAR 
scanning), or by forcing array stimuli to be presented in sequence. Adopting 
these constraints should lead decision makers to produce separate 
independent assessments of array stimuli consistent with the optimal 
decision rule. 

• Training for decision making in compound decision tasks should emphasize 
scanning techniques or use sequential presentation to encourage adoption of 
the optimal decision rule for this kind of task. 

• The model represents a formal abstract conceptual framework, and so 
should be applied to research in automated decision support systems. 
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Annexes 
 

The likelihood functions for each version of SDT-CD were derived from those 
by Olgilvie and Creelman (1968). For computational efficiency, the likelihood 
function was transformed into a sum of log-likelihoods.8 The output of this 
equation is referred to as the Log Maximum Likelihood Estimator (LMLE). 
The following log-likelihood equation was used for both decision models, with 
the corresponding probabilities computed depending on the decision rule. 

( )( ) ( ) ( )
( )( ) ( )( ) ( )CIDFIDMS

HTFACR

nTPCIDPnTPFIDPnTPHTP
nTPHTPnTAFAPnTAFAPLMLE

)|(ln)|(1ln)|(1ln
)|(ln)|(ln)|(1ln

+−+−
+++−=

(A1) 

Where n is the response frequency for each respective response category, 
P(FA|TA) and P(HT|TP) are defined by equations 5 and 6 (for the Independent 
Observation rule) or equations 7 and 8 (for the Integration rule), and P(CID|TP) 
is defined as in Equation 9. The parameters d  and c are assigned values by the 
optimization function to maximize the value of Equation A1 (or equivalently to 
minimize its negative). Because Equation A1 does not have an analytic 
solution, the corresponding Fisher Information Matrix, and hence estimates of 
variance in the fitted parameters, can not be calculated using this model. 
Despite this, statistical tests on parameter values can still be possible by fitting 
the model to data from individual subjects. 

 

                                                      
8Likelihood functions are typically defined in terms of the products of likelihoods. Taking the natural logarithm 
transforms the product calculation into a summation which is more numerically efficient to calculate. 
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List of 
symbols/abbreviations/acronyms/initialisms 

 

 

DND Department of National Defence 

d′ Model parameter representing decision making performance 

c Model parameter representing decision bias 

χ2 Chi-squared test statistic for assessing model goodness-of-fit 

SDT-CD Signal Detection Theory – Compound Decision model 

TP Array of stimuli containing foils plus the target 

TA Array of stimuli containing only foils 

HT Detection hit-rate defined as a response proportion 

FA Detection false-alarm rate defined as a response proportion 

CID Correct identification rate defined as a response proportion 

FID False identification rate defined as a response proportion 

MS Detection miss rate defined as a response proportion 

CR Detection correct-rejection rate defined as a response 
proportion 

ID Identification 
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Glossary 
 

Technical term Explanation of term 

Target Stimulus acting as the target to be identified 

Foil Stimulus acting as a non-target distractor 

Hit rate Proportion of correct target detections 

False-alarm rate Proportion of incorrect target detections 

Correct ID rate Proportion of correct target identifications 

False ID rate Proportion of incorrect target identifications 

Miss rate Proportion of targets not detected 

Correct-rejection 
rate 

Proportion of foils correctly rejected as non targets 
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